Whole food, food state or synthetic nutrients – which is best?

Robert Verkerk PhD
Founder, scientific and executive director
Alliance for Natural Health International

anhinternational.org
Domesticated humans?

What next?
Ideal v Real World

"Most people should be able to get all the nutrients they need by eating a varied and balanced diet.
- Food Standards Agency, NHS Direct, NIDirect, etc.

Most people should be able to get all the nutrients they need for healthy bones by eating a healthy balanced diet.
- NHS Choices, Bone Health

"If consumers do choose to take supplements, it is important they are informed and they may also wish to consult with their GP."
- Food Standards Agency
What is a balanced and varied diet?

The eatwell plate shows how foods can be classified into five groups shown as wedges of different size. These illustrate the proportions in which we should eat foods from these groups to provide a healthy diet that supplies all the nutrients our bodies need to work efficiently. You will notice that the foods in the two largest groups are all derived from plants.

- British Nutrition Foundation

http://www.nhs.uk/Livewell/Goodfood/Pages/eatwell-plate.aspx

http://www.nutrition.org.uk/healthyliving/healthyeating/healthyvarieddiet.html
Dietary diversity and subsequent mortality in the First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study

Ashima K Kant, Arthur Schatzkin, Tamara B Harris, Regina G Ziegler, and Gladys Block

ABSTRACT We examined the relation of dietary diversity to subsequent all-cause mortality by using data from the First National Health and Nutrition Examination Survey (NHANES I) Epidemiologic Follow-up Study, 1982–1987. The analytic cohort consisted of 4160 men and 6264 women (including 2556 deaths), 25–74 y at baseline (1971–1975). Twenty-four-hour dietary recalls were evaluated for variety among the five major food groups: dairy, meat, grain, fruit, and vegetable, with a dietary diversity score (DDS): consumption of each food group contributed 1 point to a maximum possible DDS of 5. Age-adjusted risk of mortality was inversely related to DDS ($P \leq 0.0009$) in men and women. The inverse diversity-mortality association was adjusted for potential confounders: education, race, smoking status, and dietary fiber intake; the relative risk of mortality in men and women consuming two or fewer food groups was 1.5 (95% CI 1.2–1.8) and 1.4 (95% CI 1.1–1.9), respectively. In conclusion, diets that omitted several food groups were associated with an increased risk of mortality.

Key Words Diet and all-cause mortality, dietary diversity, mortality, diet quality and mortality, NHANES I Epidemiologic Follow-up Study, First National Health and Nutrition Examination Survey, all-cause mortality, CVD, cancer.
Demographic and psychosocial characteristics of middle-aged women and men who use dietary supplements

Results from the Malmö Diet and Cancer Study

PETER WALLSTRÖM, SÖLVE ELMSTÅHL, BERTIL S. HANSON, PER-OLOF ÖSTERSGREN, ULLA JOHANSSON, LARS JANZON, S. ANDERS LARSSON

In the Western world, huge amounts of money are being spent on dietary supplements, although this usage may be useless and possibly harmful. Factors that influence supplement consumption have not been well defined. This paper aims to describe relations between supplement usage and various sociodemographic and psychosocial factors. The study cohort consisted of 6,545 men and women, aged 45–65 years, who during 1991 and 1992 participated in the Malmö Diet and Cancer Study, a large-scale prospective cohort study. Data on supplement consumption were recorded during 7 consecutive days. Each participant also completed a questionnaire, covering education, work history, alcohol, smoking, perceived health and psychosocial factors such as social network, social support, job strain, etc. Total body fat was also measured. The prevalence of supplement consumption was 43% among women and 29% among men. The most important sociodemographic factors were education, ethnicity and age. Female users tended to be slim, have worse perceived health and to drink more alcohol than other women, none of which applied to male users. No differences in smoking habits between users and non-users were noted. None of the psychosocial factors appeared to influence supplement consumption. Those who used vitamins and/or minerals only were more similar to non-users than those who used all kinds of dietary supplements. There was a substantial variation in consumption prevalence with season. The prevalence of supplement consumption is influenced by a number of demographic factors and also by season. To claim that supplement users are health-conscious is an over-simplification. The psychosocial factors behind supplement usage call for further analyses.

Key words: vitamins, diet surveys, cohort studies, social environment
Malmö Diet and Cancer Study

The prevalence of anaemia and mineral supplement use in a Swedish middle-aged population. Results from the Malmö Diet and Cancer Study.

CONCLUSION:
A substantial number had mineral intake below present recommendations despite supplement use. The nutrient content of some supplements could be improved, especially calcium. Iron supplementation among postmenopausal women and men are questionable.

Vitamin and Mineral Supplement Use and Mortality in a US Cohort

Insun Kim, DrPH, David F. Williamson, PhD, Tim Byers, MD, MPH, and Jeffrey P. Koplan, MD, MPH

Introduction

Vitamin and mineral supplements are widely used among persons in the United States. According to a recent national survey, 32% of men and 45% of women reported having taken nutritional supplements in the 2-week period prior to interview. This amounts to an annual expenditure of about $3.3 billion per year.

Persons who take nutritional supplements report doing so for a number of reasons, including to compensate for perceived dietary deficiencies, improve their sense of health and well-being, and promote longevity. But despite the wide use of these products, the long-term health effects of supplement use are largely unknown. To examine the relationship between reported use of supplements and mortality, we analyzed data from US adults 25 to 74 years of age who were examined in the First National Health and Nutrition Examination Survey (1971 to 1975), with vital status determined through 1987.

Results. At baseline, 22.5% of the cohort reported using supplements regularly and 10.0% reported irregular use. The risk of mortality for

The NHANES I, which was conducted by the National Center for Health Statistics from 1971 through 1975, was designed to represent the noninstitutionalized civilian US population from 1 to 74 years of age. A total of 14,407 participants of NHANES I who were aged 25 to 74 years and were examined at the baseline were included in the NHEFS. Vital status information through 1987 was available for 96% of the cohort; we used the final release version of the public use 1987 NHEFS mortality data tapes maintained by the National Center for Health Statistics. Between 1982 and 1984, surviving members of the cohort (n = 10,523) were reinterviewed.
EFFECTS OF A COMBINATION OF BETA CAROTENE AND VITAMIN A ON LUNG CANCER AND CARDIOVASCULAR DISEASE

GILBERT S. OMMEN, M.D., PH.D., GARY E. GOODMAN, M.D., M.S., MARK D. THORNQUIST, PH.D., JOHN BALMES, M.D., MARK R. CULLEN, M.D., ANDREW GLASS, M.D., JAMES P. KEOGH, M.D., FRANK L. MEYSKENS, JR., M.D., BARBARA VALLANIS, DR.P.H., JAMES H. WILLIAMS, JR., M.D., SCOTT BARNHART, M.D., M.P.H., AND SAMUEL HAMMAR, M.D.*

Abstract Background. Lung cancer and cardiovascular disease are major causes of death in the United States. It has been proposed that carotenoids and retinoids are agents that may prevent these disorders.

Methods. We conducted a multicenter, randomized, double-blind, placebo-controlled primary prevention trial—the Beta-Carotene and Retinol Efficacy Trial—involving a total of 18,314 smokers, former smokers, and workers exposed to asbestos. The effects of a combination of 30 mg of beta carotene per day and 25,000 IU of retinol (vitamin A) in the form of retinyl palmitate per day on the primary end point, the incidence of lung cancer, were compared with those of placebo.

Results. A total of 388 new cases of lung cancer were diagnosed during the 73,135 person-years of follow-up (mean length of follow-up, 4.0 years). The active-treatment group had a relative risk of lung cancer of 1.28 (95 percent confidence interval, 1.04 to 1.57; P = 0.02), as compared with the placebo group. There were no statistically significant differences in the risks of other types of cancer. In the active-treatment group, the relative risk of death from any cause was 1.17 (95 percent confidence interval, 1.03 to 1.33); of death from lung cancer, 1.46 (95 percent confidence interval, 1.07 to 2.00); and of death from cardiovascular disease, 1.28 (95 percent confidence interval, 0.99 to 1.61). On the basis of these findings, the randomized trial was stopped 21 months earlier than planned; follow-up will continue for another 5 years.

Conclusions. After an average of four years of supplementation, the combination of beta carotene and vitamin A had no benefit and may have had an adverse effect on the incidence of lung cancer and on the risk of death from lung cancer, cardiovascular disease, and any cause in smokers and workers exposed to asbestos. (N Engl J Med 1996;334;1150-5.)

©1996, Massachusetts Medical Society.

LUNG cancer is the leading cause of death from cancer in the United States, accounting for approximately 29 percent of deaths from cancer and 6 percent of all deaths.1 New approaches are essential to prevent lung cancer in persons who have smoked cigarettes or who have had occupational exposure to asbestos. Twenty-nine percent of men and 25 percent of women who are 45 to 64 years of age currently smoke,2 and at least 40 percent of men and 20 percent of women in this age group are former smokers.3 An estimated 4000 to 6000 deaths from lung cancer per year are attributed to exposure to asbestos.4-5

Study Design
The study’s strategy, design, detailed methods, eligibility criteria...
Nail in coffin: vitamin E

Meta-Analysis: High-Dosage Vitamin E Supplementation May Increase All-Cause Mortality

Edgar R. Miller III, MD, PhD; Roberto Pastor-Barriuso, PhD; Darshan Dalal, MD, MPH; Rudolph A. Riemersma, PhD, FRCPE; Lawrence J. Appel, MD, MPH; and Eliseo Guallar, MD, DrPH

Background: Experimental models and observational studies suggest that vitamin E supplementation may prevent cardiovascular disease and cancer. However, several trials of high-dosage vitamin E supplementation showed non-statistically significant increases in total mortality.

Purpose: To perform a meta-analysis of the dose-response relationship between vitamin E supplementation and total mortality by using data from randomized, controlled trials.

Patients: 125,967 participants in 19 clinical trials. Of these trials, 9 tested vitamin E alone and 10 tested vitamin E combined with other vitamins or minerals. The dosages of vitamin E ranged from 16.5 to 2000 IU/d (median, 400 IU/d).

Data Sources: PubMed search from 1966 through August 2004, complemented by a search of the Cochrane Clinical Trials Database and review of citations of published reviews and meta-analyses. No language restrictions were applied.

Data Extraction: 3 investigators independently abstracted study reports. The investigators of the original publications were contacted if required information was not available.

Data Synthesis: 9 of 11 trials testing high-dosage vitamin E (≥400 IU/d) showed increased risk (risk difference > 0) for all-cause mortality in comparisons of vitamin E versus control. The pooled all-cause mortality risk difference in high-dosage vitamin E trials was 39 per 10,000 persons (95% CI, 3 to 74 per 10,000 persons; P = 0.035). For low-dosage vitamin E trials, the risk difference was −16 per 10,000 persons (CI, −41 to 10 per 10,000 persons; P > 0.2). A dose-response analysis showed a statistically significant relationship between vitamin E dosage and all-cause mortality, with increased risk of dosages greater than 150 IU/d.

Limitations: High-dosage (≥400 IU/d) trials were often small and were performed in patients with chronic diseases. The generalizability of the findings to healthy adults is uncertain. Precise estimation of the threshold at which risk increases is difficult.

Conclusion: High-dosage (≥400 IU/d) vitamin E supplements may increase all-cause mortality and should be avoided.

Vitamin pills ‘can increase the risk of early death’

By Kate Devlin
Medical Correspondent

What is the good of supplements?

Vitamin A: Thought to boost the immune system, it is said to be important for bone and tooth development and is found in milk, eggs and liver.

Vitamin C: Supposed to boost the immune system and help the body to absorb iron. It is found in citrus fruit, blackcurrants, strawberries, tomatoes, peppers and Brussels sprouts.

Some supplements increased the risk of an early death by four per cent. Although the review found no significant detrimental effect caused by vitamin C, it found no evidence that it helped ward off disease. Millions take it in the hope of avoiding a common cold. Corner Brook, who led the review, said: ‘We could find no evidence to support taking antioxidant supplements to reduce the risk of dying earlier in healthy people or patients with various diseases.’

If anything, people in trial groups given the antioxidants
Nail in coffin: folic acid?

Effects of folic acid supplementation on overall and site-specific cancer incidence during the randomised trials: meta-analyses of data on 50,000 individuals.

"Both the hopes for rapid cancer prevention and the fears about rapidly increased cancer risk from folic acid supplementation were not confirmed by this meta-analysis. It remains to be seen whether any beneficial or harmful effects on cancer incidence will eventually emerge with even longer treatment or follow up."

http://www.medicalnewstoday.com/articles/255453.php
A High Diet Quality Is Associated with Lower Incidence of Cardiovascular Events in the Malmö Diet and Cancer Cohort

Joanna Hlebowicz1,2,3, Isabel Drake2*,3, Bo Gullberg2, Emily Sonestedt2, Peter Wallström2, Margaretha Persson1,2, Jan Nilsson1,2, Bo Hedblad1,2, Elisabet Wirfält2

1 Center for Emergency, Skåne University Hospital, Malmö, Sweden, 2 Lund University, Department of Clinical Sciences in Malmö, Sweden, 3 Department of Cardiology, Skåne University Hospital, Malmö, Sweden

Abstract

Aims: To investigate if diet quality is related to incidence of cardiovascular (CV) events.

Subjects and Methods: A diet quality index based on the 2005 Swedish Nutrition Recommendations and the Swedish Dietary Guidelines was created and included six dietary components: saturated fatty acids, polyunsaturated fatty acids, fish and shellfish, dietary fiber, fruit and vegetables, and sucrose. The index ranked 17126 participants (59% women) of the population-based Malmö Diet and Cancer cohort (Sweden) on their dietary intakes. Total index score was categorized as low, medium or high. Cox proportional hazard regression was used to model associations between index score categories and index components with risk of incident CV events, with adjustment for potential confounders. The incidence of first CV events (non-fatal or fatal myocardial infarction or ischemic stroke or death from ischemic heart disease) was monitored from baseline (1991–1996) until December 31, 2008; 703 CV events occurred in women and 1093 in men.

Results: A high diet quality was associated with decreased risk of CV events when compared to a low diet quality. In multivariate analysis, the risk reduction was 32% (hazard ratio = 0.68, 95% confidence interval: 0.49–0.73) in men and 27% (hazard ratio = 0.73, 95% confidence interval: 0.59–0.91) in women. When examined separately and mutually adjusted for each other, the individual components were either not associated with CV risk or marginally decreased risks were seen.

Conclusion: High quality diets in line with current recommendations may reduce the risk of CV events. This study illustrates the importance of considering a combination of dietary factors when evaluating diet-disease associations.

Robust finding: fruit & veg

RESEARCH

Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies

Xia Wang *instructor in nutrition*¹ ², Yingying Ouyang *research fellow*², Jun Liu *research fellow*², Minmin Zhu *instructor in biostatistics*³, Gang Zhao *instructor in medicine*⁴, Wei Bao *postdoctoral fellow*⁵, Frank B Hu *professor*⁶

¹Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan, China; ²Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ³Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ⁴Department of Cardiovascular Sciences, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China; ⁵Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20852, USA; ⁶Departments of Nutrition and Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA

Wang X, et al. BMJ. 2014 Jul 29;349:g4490
Nature’s treasure trove

- 10,000 spp grasses (wheat, rice, maize, barley, sorghum, rye and oats)
- 3,000 spp tropical fruits (banana, mango, pineapple and papaya)
- 18,000 spp legumes (peas, beans, soybeans, peanuts, alfalfa and clover)
- 1,500 spp edible nuts
- 1,500 spp edible mushrooms
- 60,000 spp medicinal plants

Folate: master controller

Full spectrum vitamin E

4 tocopherols + 4 tocotrienols = 8 Vitamin E isomers
Retinol + carotenoids

• Retinol: intestine to lymph: f(bile salts, pancreatic lipase and chylomicrons)

• Carotenoids: ~600; 60 = pro-vitamin A; others include AO function

• IOM conversions:
 - 1 IU retinol = 0.3 mcg RAE
 - 1 IU beta-carotene from dietary supplements = 0.15 mcg RAE
 - 1 IU beta-carotene from food = 0.05 mcg RAE
 - IU alpha-carotene or beta-cryptoxanthin = 0.025 mcg RAE
B1: Thiamin pyrophosphate (TPP) CAS 154-87-0
B2: Flavin mononucleotide (FMN) CAS 130-40-5
B3: Nicotinic acid CAS 59-67-6 and niacinamide CAS 98-92-0 (1:3 ratio)
B5: Pantethine CAS 16816-67-4
B6: Pyridoxine HCl CAS 58-56-0
B7: D-biotin CAS 58-85-5
B9: Orgen-FA or Quadrefolic (orgenetics.com; quadrefolic.com)
B12: Hydroxocobalamin (acetate) CAS 22465-48-1, methylcobalamin CAS 13422-55-4, 5’-deoxyadenosylcobalamin CAS 13870-90-1 (2:1:1 ratio)
Multi-target botanicals

Wholistic Turmeric

INGREDIENTS

Turmeric root and volatile extract

INC

Indian long pepper

KEY
FUNCTIONAL
COMPONENTS

Phenylpropanoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin, etc.), volatile oils (l-turmerone, a-turmerone, h-turmerone, z-limonene, a-limonene, etc.), mono- and sesquiterpenes including a-turmerone, a-limonene, f-limonene, etc.

Piperine, rutin, beta-carboxylic, piperolines, limonene, etc.

Seaweeds
Arctic seaweed
Ginger root
Spirulina

Nutrigest®

Seaweeds
Wrack seaweed nutrients
Spirulina nutrients

TARGET BODY SYSTEMS

HEALTHY INFLAMMATORY SYSTEMS

IMMUNE SYSTEM

MITOCHONDRIAL/ENERGY SYSTEM

FREE RADICAL SCAVENGING SYSTEM

GASTROINTESTINAL AND METABOLIC SYSTEMS
“Full spectrum” botanicals
‘Manufacturing’ vitamins

REAL FOOD STATE
Whole Food Fermented
Whole food plant sources (e.g. fruits, vegetables, herbs and spices, mushrooms) are added to a bacterial or bacterial/yeast culture modelled on the healthy human gut microbiome.

- Organic alcohol/freeze drying applied to cease fermentation (and nutrient breakdown)
- Full range of benefits associated with food source nutrients, microbially-partially digested for enhanced bioavailability

- No attempt made to stall fermentation
- Very low levels of vitamins remain in finished product owing to fermentation

PSUEDO FOOD STATE
‘Food State’ Vitamins
Usually made by adding industrially manufactured (synthetic) vitamins to a yeast (Saccharomyces cerevisiae) culture (i.e. probiotic-free)

- Synthetic vitamins still present in final product in isolated form, while a proportion (% generally not stated) become chelated or bonded to organic molecules and are likely to be more readily assimilated than un-chelated, chemical forms. May have binders and fillers added if in tablet form
- Unlikely to deliver same benefits as naturally-occurring, food matrix or fermented forms given lack of end-chain forms and presence of synthetic forms

SYNTHETIC
Industrially manufactured vitamins
Made using various synthetic or bio-converted processes, including from sources derived from GM crops. Resulting isolated chemical forms may differ significantly (form & function) from natural, food-derived forms

- May be formulated with fillers and binders as synthetic forms highly concentrated. Synthetic forms are stable but not necessarily optimal for health (e.g. beta-carotene, vitamin E, folic acid). No end-chain forms present so body has to reduce and metabolise — dependent on a healthy gut microbiome

- Increasing body of evidence suggests that food-derived nutrients have greater benefits and functionality within the body. Certain synthetic nutrients may be toxic at high doses.
Naturally-occurring vitamins

Tri-En-All 400
Contains Natural Unesterified Mixed Tocopherols and Tocotrienols

Formula (#98738)
Each Softgel Contains:
Vitamin E ... 400 IU
(as d-alpha tocopherol)
with mixed tocopherols
providing a minimum of:
Gamma-tocopherol 280 mg
Beta and Delta-tocopherols 40 mg
Mixed Tocotrienols (from palm) 25 mg

Suggested Use
Adults take one softgel daily or as directed by physician.
WHAT'S IN GOOD GREEN STUFF?

Superblend of all your Essential Nutrients (per 10 g serve)

PLANT FOODS

<table>
<thead>
<tr>
<th>Food</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic spirulina</td>
<td>1000 mg</td>
</tr>
<tr>
<td>European pea protein isolate</td>
<td>904 mg</td>
</tr>
<tr>
<td>Lecithin (sunflower)</td>
<td>750 mg</td>
</tr>
<tr>
<td>Apple pectin</td>
<td>550 mg</td>
</tr>
<tr>
<td>Red marine algae</td>
<td>485 mg</td>
</tr>
<tr>
<td>Flaxseed</td>
<td>400 mg</td>
</tr>
<tr>
<td>Organic wheatgrass leaf</td>
<td>340 mg</td>
</tr>
<tr>
<td>Organic chlorella</td>
<td>340 mg</td>
</tr>
<tr>
<td>Organic barley leaf</td>
<td>300 mg</td>
</tr>
<tr>
<td>Acorola fruit</td>
<td>270 mg</td>
</tr>
<tr>
<td>Papaya</td>
<td>250 mg</td>
</tr>
</tbody>
</table>

PLANT EXTRACTS

<table>
<thead>
<tr>
<th>Extract</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus bioflavonoids</td>
<td>500 mg</td>
</tr>
<tr>
<td>Globe artichoke leaf (15:1)</td>
<td>500 mg</td>
</tr>
<tr>
<td>Bilberry (100:1)</td>
<td>200 mg</td>
</tr>
<tr>
<td>Blackcurrant (200:1)</td>
<td>200 mg</td>
</tr>
<tr>
<td>Rosehip (4:1)</td>
<td>175 mg</td>
</tr>
<tr>
<td>Grape seed (120:1)</td>
<td>100 mg</td>
</tr>
<tr>
<td>Panax ginseng (4:1)</td>
<td>100 mg</td>
</tr>
<tr>
<td>Milk thistle seed (70:1)</td>
<td>80 mg</td>
</tr>
<tr>
<td>Gotu kola (10:1)</td>
<td>75 mg</td>
</tr>
<tr>
<td>Green tea (10:1)</td>
<td>75 mg</td>
</tr>
<tr>
<td>Rosemary leaf (4:1)</td>
<td>75 mg</td>
</tr>
</tbody>
</table>

PLANT EXTRACTS

<table>
<thead>
<tr>
<th>Extract</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashwagandha root (5:1)</td>
<td>75 mg</td>
</tr>
<tr>
<td>Astragalus root (4:1)</td>
<td>75 mg</td>
</tr>
<tr>
<td>Turmeric root (4:1)</td>
<td>70 mg</td>
</tr>
<tr>
<td>Cocoa polyphenols</td>
<td>70 mg</td>
</tr>
<tr>
<td>Rhodiola rosea root (15:1)</td>
<td>50 mg</td>
</tr>
<tr>
<td>Goji berry (4:1)</td>
<td>40 mg</td>
</tr>
<tr>
<td>Dandelion</td>
<td>40 mg</td>
</tr>
<tr>
<td>Hawthorn berry (10:1)</td>
<td>35 mg</td>
</tr>
<tr>
<td>Burdock root (10:1)</td>
<td>25 mg</td>
</tr>
<tr>
<td>Revesatrol</td>
<td>15 mg</td>
</tr>
</tbody>
</table>

BIOAVAILABLE VITAMINS

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Amount (NRV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>600 µgRE (75% NRV)</td>
</tr>
<tr>
<td>Vitamin B1</td>
<td>600 µgRE (78% NRV)</td>
</tr>
<tr>
<td>Vitamin B2</td>
<td>10 µg (200% NRV)</td>
</tr>
<tr>
<td>Vitamin B3</td>
<td>15 mg a-TE (125% NRV)</td>
</tr>
<tr>
<td>Vitamin B6</td>
<td>360 mg (450% NRV)</td>
</tr>
<tr>
<td>Vitamin K2</td>
<td>70 µg (93% NRV)</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>360 mg (450% NRV)</td>
</tr>
<tr>
<td>Vitamin D3</td>
<td>10 µg (200% NRV)</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>15 mg a-TE (125% NRV)</td>
</tr>
<tr>
<td>Vitamin D2</td>
<td>360 mg (450% NRV)</td>
</tr>
<tr>
<td>Folate</td>
<td>360 mg (450% NRV)</td>
</tr>
<tr>
<td>Folic acid</td>
<td>360 mg (450% NRV)</td>
</tr>
<tr>
<td>Biotin</td>
<td>330 mg (660% NRV)</td>
</tr>
<tr>
<td>Vitamin B12</td>
<td>100 µg (400% NRV)</td>
</tr>
</tbody>
</table>

BIOAVAILABLE MINERALS

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Amount (NRV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium (phosphate)</td>
<td>300 mg (15% NRV)</td>
</tr>
<tr>
<td>Calcium (from red marine algae)</td>
<td>165 mg (23% NRV)</td>
</tr>
<tr>
<td>Magnesium (citrate & glycinate)</td>
<td>100 mg (27% NRV)</td>
</tr>
<tr>
<td>Zinc (gluconate)</td>
<td>12 mg (120% NRV)</td>
</tr>
<tr>
<td>Copper (gluconate)</td>
<td>250 µg (25% NRV)</td>
</tr>
<tr>
<td>Iodine (trace mineral)</td>
<td>150 µg (100% NRV)</td>
</tr>
<tr>
<td>Manganese (gluconate)</td>
<td>1.5 mg (75% NRV)</td>
</tr>
<tr>
<td>Silica (inosilic acid & marine algae)</td>
<td>14.5 mg</td>
</tr>
<tr>
<td>Selenium (L-selenomethionine)</td>
<td>35 µg (96% NRV)</td>
</tr>
</tbody>
</table>

OTHER

<table>
<thead>
<tr>
<th>Other</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus acidophilus</td>
<td>3 billion CFU</td>
</tr>
<tr>
<td>Bifidobacterium bifidum</td>
<td>3 billion CFU</td>
</tr>
<tr>
<td>R/5-alpha lipolic acid</td>
<td>75 mg</td>
</tr>
<tr>
<td>Bromelain (2000 GDU/g)</td>
<td>65 mg</td>
</tr>
<tr>
<td>L2/3,6 beta glucans</td>
<td>9 g</td>
</tr>
<tr>
<td>Ubiquinone (CoQ10)</td>
<td>8 g</td>
</tr>
<tr>
<td>Ubiquinol (reduced CoQ10)</td>
<td>8 g</td>
</tr>
</tbody>
</table>

Notes:

- All weights are average.
- Extracts and concentrates are listed as equivalent values.
- Food supplement
Conclusions

- Isolated vitamins are low cost and very useful in dealing with gross deficiencies, selective malabsorption, SNPs, etc.
- Food represents most well proven optimal delivery system for nutrients.
- Naturally-occurring/foodmatrix: generalised benefits, science is emerging.
- Biosynthetic and fermentation processes may deliver equivalent benefits of food forms, with options for higher doses and lower cost.